Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Rev. méd. Chile ; 143(3): 320-328, mar. 2015. tab
Article in Spanish | LILACS | ID: lil-745629

ABSTRACT

Background: Suicide mortality rates are increasing among teenagers. Aim: To study the prevalence and predictive factors of suicide attempts among Chilean adolescents. Material and Methods: A random sample of 195 teenagers aged 16 ± 1 years (53% males) answered an anonymous survey about their demographic features, substance abuse, the Osaka suicidal ideation questionnaire, Smilksten familial Apgar. Beck hopelessness scale, Beck depression scale and Coppersmith self-esteem inventory. Results: Twenty five percent of respondents had attempted suicide at least in one occasion during their lives. These attempts were significantly associated with female gender, absent parents, family dysfunction, drug abuse, smoking, low self-esteem, hopelessness, depression and recent suicidal ideation. A logistic regression analysis accepted female gender, smoking and recent suicidal ideation as significant independent predictors of suicide attempt. Conclusions: Suicide attempted is common among teenagers and its predictors are female sex, smoking and previous suicidal ideation.


Subject(s)
Animals , Female , Humans , Mice , Pregnancy , Acetaldehyde/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Embryo, Mammalian/metabolism , Ethanol/toxicity , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/pathology , Acetaldehyde/toxicity , Animals, Newborn , DNA Damage , Disease Models, Animal , Embryo, Mammalian/embryology , Genome , Hematopoietic Stem Cells/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
2.
Annals of Laboratory Medicine ; : 380-384, 2012.
Article in English | WPRIM | ID: wpr-125845

ABSTRACT

Fanconi anemia (FA) is a rare genetic disorder affecting multiple body systems. Genetic testing, including prenatal testing, is a prerequisite for the diagnosis of many clinical conditions. However, genetic testing is complicated for FA because there are often many genes that are associated with its development, and large deletions, duplications, or sequence variations are frequently found in some of these genes. This study describes successful genetic testing for molecular diagnosis, and subsequent prenatal diagnosis, of FA in a patient and his family in Korea. We analyzed all exons and flanking regions of the FANCA, FANCC, and FANCG genes for mutation identification and subsequent prenatal diagnosis. Multiplex ligation-dependent probe amplification analysis was performed to detect large deletions or duplications in the FANCA gene. Molecular analysis revealed two mutations in the FANCA gene: a frameshift mutation c.2546delC and a novel splice-site mutation c.3627-1G>A. The FANCA mutations were separately inherited from each parent, c.2546delC was derived from the father, whereas c.3627-1G>A originated from the mother. The amniotic fluid cells were c.3627-1G>A heterozygotes, suggesting that the fetus was unaffected. This is the first report of genetic testing that was successfully applied to molecular diagnosis of a patient and subsequent prenatal diagnosis of FA in a family in Korea.


Subject(s)
Child, Preschool , Female , Humans , Male , Pregnancy , Base Sequence , Exons , Fanconi Anemia/diagnosis , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Frameshift Mutation , Genetic Testing , Heterozygote , Karyotyping , Prenatal Diagnosis , RNA Splice Sites , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL